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Coexistence and phase separation in sheared complex fluids
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We demonstrate how to construct dynamic phase diagrams for complex fluids that undergo transitions under
flow, in which the conserved composition variable and the broken-symmetry order parameter~nematic, smec-
tic, crystalline, etc.! are coupled to shear rate. Our construction relies on a selection criterion, the existence of
a steady interface connecting two stable homogeneous states. We use the~generalized! Doi model of lyotropic
nematic liquid crystals as a model system, but the method can be easily applied to other systems, provided
nonlocal effects are included.@S1063-651X~97!51707-7#

PACS number~s!: 47.50.1d, 05.70.Ln, 64.70.Md, 47.20.Ft
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Complex fluids in shear flow display a range of behavi
that is only beginning to be unearthed@1–6#. Shear can per-
turb equilibrium phase transitions@e.g., the isotropic-to-
nematic ~I-N! liquid crystalline @2,7–9# and isotropic-to-
lamellar@10# transitions#, and induce structures~e.g., bilayer
onions@4#! that exist only as metastable equilibrium phas
A related phenomenon is dynamic instability in no
Newtonian fluids, when the theoreticalhomogeneousstress–
strain-rate constitutive relation exhibits multivalued beha
ior, as in theories of polymer melts@11,12# and wormlike
micelles@13,14#. Such models are often used to describe,
example, the spurt effect, whereby the flow rate of a fluid
a pipe changes discontinuously as a function of applied p
sure drop @15#. The most important unresolved questio
about nonmonotonic flow curves, such as those in Fig. 1~a!,
is what determines the stress, if any, at which the sys
phase separates into ‘‘bands’’? Suggestions have inclu
~a! variational hypotheses~Ref. @16#!; ~b! assuming the stres
at the top of the stable viscous branch is selected~‘‘top
jump’’ ! @12,13,17#; ~c! including geometrical effects@18#;
and~d! incorporating~physically present! nonlocal contribu-
tions to the stress@8,19,20#. In this paper we pursue~d! and
explore in detail the utility of constitutive inhomogeneo
effects in resolving the issue of stress selection in comp
fluids, which has occupied the rheology and physics comm
nities in the guise of either unstable flows@19# or nonequi-
librium phase transitions@8#.

After a general discussion we introduce semiphenome
logical equations of motion for rodlike molecules in solutio
extending the Doi model@21# to inhomogeneous flows. Ou
study has the following goals and results:~1! We present a
general recipe for computing phase separation under flo
and hence the experimentally measured rheological be
ior; ~2! we point out that the proper field variable~either
stressor strain rate! may not be unique, a feature absent fro
equilibrium systems;~3! using concepts developed for dy
namical systems theory we conclude that stress selectio
models with nonlocal~in space! differential constitutive re-
lations in planar shear flow isunique; i.e., as with equilib-
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rium phase transitions, it occurs along a hyper-surface
lower dimension than that of the field variable space. O
discussion is facilitated by examining the stress–strain-ra
composition surface, a representation we have not seen
fore and hope will become commonplace.

The curves in Fig. 1~a! are reminiscent of pressure
volume isotherms in a liquid-gas system and, according
we seek to construct a ‘‘phase diagram’’ by pursuing
analogy between homogeneous stable steady states and

FIG. 1. ~a! Homogeneous stressŝxy vs strain rateĝ̇ behavior for
various excluded volumes~u[fLn2 /a! as calculated from the Do
model with quadratic closure@21,23#. We use the dimensionles

parametersĝ̇[ġ/(6D ron1n2
2! and ŝxy[sxyn2logL/(9phsDro!. Dot-

ted lines mark unstable branches. The plane in~b! is at fixed stress.
At ue both isotropic and nematic phases are metastable in
shear. Here and belowL55.
R55 © 1997 The American Physical Society
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librium phases. As in equilibrium, nonequilibrium ‘‘phases
may be separated, in field variable space, by hyper-surf
representing continuous~e.g., critical points! or discontinu-
ous ~‘‘first-order’’ ! transitions@8,1#. Coexistence implies an
inhomogeneous state spanning separate branches of th
mogeneous flow curves. In contrast to equilibrium bu
phases, where field variables are uniquely identified, here
may consider phase coexistence at a given shear stress
the interface parallel to the vorticity-velocity plane~curves
b2e!; or a given strain rate~curvesc2e!, with the interface
parallel to the velocity-velocity gradient plane. The approp
ate field variable is thus determined by the nature of
constitutive relation~for curveb, common strain rate is im
possible!, or even by the flow history or the rheometer~e.g.,
fixing the stress or strain rate in curvesc2e!. In this paper
we compute coexistence at a common stress, but note
computation for a common strain rate is analogous. In eq
librium, minimizing the total free energy leads to equality
field variables between two phases and the Maxwell co
mon tangent condition~e.g., the equal osmotic pressure co
dition, aided by equal chemical potential, in rod suspensi
@22#!. In dynamics, the former follows from the equations
motion plus the stationary condition, with an extra shear
gree of freedom. However, the lack of a criterion to repla
the latter leaves an unresolved degeneracy~e.g., which stress
is selected for a given averaged strain rate!. Flow experi-
ments on wormlike micelles find a well-defined transiti
stress for the onset of banded flows@2,3,5,6#, which suggests
that the degeneracy is not physical.

For the thermotropic~i.e., restricted to the melt compos
tion! I-N transition under flow, Olmsted and Goldbart@8#
resolved this degeneracy by rejecting those possibilities
did not admit a stationary interface solution and found, n
merically, an apparently uniquely selected state. They
cludedgradient terms, which penalize~energetically! spatial
microstructure variations and dictate the interface struct
The importance of gradient terms was also recognized
Refs.@23,19,20#. The existence condition of a stationary i
terface selects one among a band of possible coexisting
lutions, and is fundamentally different from augmenting
local constitutive model with a variational principle@16# or
assuming selection at the limits of stability@12,13,17#. Be-
low we justify theuniquenessof a selected state.

Now we proceed with our calculation. The free energy
a solution of rodlike molecules of volume fractionf in an
athermal solvent~e.g., as in Ref.@22#! is given by

F~f,Q!5kBTE d3r H f

v r
logf1

~12f!

vs
log~12f!

1
f

v r
@ 1
2 ~12 1

3u! TrQ22 1
3u TrQ

31 1
4u~ TrQ2!2

1 1
2K~¹aQbl!2#1 1

2g~¹f!2J . ~1!

Here v r and vs are rod and solvent monomer volume
Qab is the nematic order parameter tensor@25#, and u
[fLn2 /a is Doi’s excluded volume parameter@21#, where
L is the rod aspect ratio andn2 anda areO~1! geometrical
prefactors. This free energy includes the entropy of mixi
es
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the orientational contribution yielding an I-N transition@21#,
and spatial correlations of composition and nematic or
within the one constant approximation. The phenomenolo
cal gradient terms may, in principle, be calculated from
microscopic model.

The equations of motion are@21,24,26#

r~] t1v•“ !v5“•s~f,k,Q! , ~2!

~] t1v•“ !Q5F ~k,Q!1G~f,Q! , ~3!

~] t1v•“ !f52“•J , ~4!

with kab5¹bva andr the density. The stress tensor is

s52pI12hks1s rev~f,Q! , ~5!

wherekab
s [(kab1kba)/2 and we takeh to be the solvent

viscosityhs for simplicity. The reversible stress due to th
nematic order is@21,8,24#

s rev523H1H •Q2Q•H2“Qab

dF
d“Qab

, ~6!

where H52dF/dQ. The isotropic stress from the forc
density (“f)dF/df @26# has been neglected. In Eq.~3! the
~reactive! ordering termF is given by

F ~k,Q!5 2
3ks1k•Q1Q•kT22~Q1 1

3 I ! Tr~Q•k !.
~7!

For simplicity, we have chosen the form appropriate for
infinite aspect ratio@21#. The dissipative portionG is

G~f,Q!5
6n1D rov r

3

kBTf3l 6~12 3
2 TrQ

2!2
H , ~8!

whereD ro is the single-rod rotational diffusion coefficien
n1 is a geometric prefactor, andl is the rod length@21#. The
chemical potentialm drives the currentJ,

J52M •“m , ~9!

whereM is the mobility tensor andm[dF/df.
For other systems, equations like Eqs.~4! and~3! govern

the conserved and broken-symmetry~or other long-lived!
variables, respectively. For some local models, internal
namics @Eq. ~3!# can be eliminated to give the stress as
history integral over the strain rate. In polymer melts@11#
and wormlike micelles@14# far from a nematic regime, this
leads to nonmonotonic stress–strain-rate curves.

We seek stable steady-state solutions to Eqs.~2!–~4! for
planar shear,v(r )5ġyx̂. Integrating Eqs.~2! and ~4! along
y yields sxy(f,ġ,Q)5s0 and m(f,Q)5m0, wheres0 is
the applied stress. One integration constant of Eq.~4! is zero
from the boundary conditionJy50, whilem0 is determined
below @27#. For homogeneous solutions,Q may be elimi-
nated fromsxy andm using Eq.~3!. The stress is shown in
Fig. 1. BecauseF(f,Q) describes an I-N transition, multiple
roots forQ may exist at a given stress@8,9#, with distinct
strain rates.
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For coexistence at fixed stresss0 ~the interface has a
normal parallel toŷ!, a stress contour traces a line in th
ġ-f plane @Fig 2~a!#. We plotm~f! along this line in Fig.
2~b!. Coexisting phases must have the samem. For concen-
trationsf̄ outside points 1 and 4,m0 is determined uniquely
Between these points, we must determinem0 at which two
phases coexist. Following Ref.@8#, we select them0 that
permits a stationary interface profile between the two sta
homogeneous states withm0 . This inhomogeneous solutio
satisfiessxy5s0, m5m0 and Eq.~3! ~05F1G!. This is not
an auxiliary assumption, but follows from the inhomog
neous equations of motion.Given a selectedm0 and a mean
concentrationf̄, the portions of the two phases are fixed
the lever rule, and the mean shear rate can be calculate
the static limit ġ50 the stationary interface condition fo
lows from minimizingF(f,Q) with a given f̄ constraint.
Functional minimization with respect tof(y) allows the in-
terface position to move, thereby adjusting the ratio of
two phases and recovering the common tangent construc

To see howm0 can be selected uniquely, note that Eq.~3!,
sxy5s0 , and m5m0 , are nonlinear ordinary differentia
equations~ODE! involving ]/]y. These ODE may be con
verted into an equivalent set of first order ODE with depe
dent variables$f,df/dy,ġ,Q,dQ/dy%. In the ODE phase
space, the interfacial solution corresponds to a trajector~a
‘‘heteroclinic saddle connection’’! joining two fixed points
~the homogeneous states!. As m0 changes for fixeds0, the
phase flow changes catastrophically at those isolated va
of m0 where the desired trajectory exists.~This is proven for
differential constitutive relations in planar flow@24# by
showing that the saddle connection, assuming it exists, i
the non-transverse type@28#.! This explains the apparen
uniqueness of a selectedm0, given s0, found numerically.
Our ~one-dimensional! solution supports theexistenceof
such a solution in the modified Doi model, and is sta
against perturbations iny. Because nonlocal effects~see
Refs. @23,19# for diffusion effects! always exist in reality,
and pathological degeneracies only occur in local models
expect that models that can resolve the interface struc
have unambiguous phase diagrams.

The selection criterion determines the tie lines on Fig

FIG. 2. ~a! Reduced strain rateĝ̇(u) for the stress contour in
Fig. 1~b!. ~b! m(u) along the curve in~a!. A selected pair has bee
indicated in ~a! and ~b!. The inset shows another~topologically!
possiblem(u). Dashed lines mark the limits of stability of coexis
ing pairs.
le

-

In

e
n.

-

es

of

e

e
re

,

and varying the stress yields the phase diagram of Fig. 3~b!

@24#. In the latter, forġ50 the tie line is horizontal, and fo
ġ.0 tie lines have positive slope, because the more conc
trated nematic phase has a lower effective viscosity.
models wherem(f) has the shape of the inset of Fig. 2~b!,
tie lines have negative slopes.

Figure 4 shows the stress–averaged-strain-rate curve
would be measured in an experiment. Here the coexiste
region comprises lines with positive slopes. For models w
vertical tie lines in Fig. 3~b!, indicating a composition-
independent transition~as in the Doi-Edwards model o
polymer melts!, the plateau would be flat. This is a graphic
expression of the explanation of a sloped plateau given
Schmittet al. @17# ~however, they assumed ‘‘top-jumping’’!.
In general one must vary both average concentration
strain rate to maintain constant shear stress, a situation fa
iar from equilibrium multi-component phase coexistenc
The ‘‘plateau’’ need not be a straight line; its shape is det
mined by the change in splay of the tie lines with increas
strain rate in Fig. 3~b!. Experiments on wormlike micelles
@2# have found the plateaus to be steady states and
‘‘spines’’ to be metastable branches.

In summary, the steps to compute phase separation u
flow are ~1! Determine the fullinhomogeneousequations of
motion. ~2! Analyze stable homogeneous flows.~3! Choose
the candidate field variable for phase coexistence. Multi
choices~e.g., stress or strain rate, according to interface
ometry! must be analyzed separately.~4! Identify pairs of
phases with the same field variables, as in Figs. 1~b! and 2~b!

FIG. 3. Phase diagram in the (ŝxy2u) ~a! and ~ĝ̇2u) ~b!
planes. Broken lines trace the loci of points 124 in Fig. 2, and the
solid lines are calculated tie lines.

FIG. 4. ŝxy vs ġC for various compositions. To read this from
Fig. 3, choose au and increase the stress. In the two-phase reg
jump from stress tie line to stress tie line until the one phase reg
is reached.
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for sxy and m. ~5! Determine the phase diagram~in field
variables! by requiring a stationary interface between hom
geneous solutions. To compare with experiments, den
variables can be used, as in Fig. 3, to find~6! the tie lines
where the lever rule applies and~7! the space-average
stress–strain-rate relations~Fig. 4!. Other multicomponent
systems retain the structure of Eqs.~2!–~4!, with Eq. ~3!
governing the dynamics of some structural order parame

We have calculated coexistence at fixed stress, w
curvesc2e in Fig. 1~a! admit, in principle, coexistence a
fixed strain rate. A full solution of Eqs.~2!–~4! requires ana-
lyzing both interface directions, which is reminiscent of, a
may be relevant to, the problem of the orientation of diblo
lamellar phases in shear@30#. Also, we have only considere
flow-aligning solutions to the Doi model. Another solutio
~called ‘‘log-rolling’’ because the rodlike molecules poin
along the vorticity axis and roll with the flow! is stable at
high shear rates@29# and will be included in a complete
treatment@24#. The extended Doi model is appropriate f
hard rod suspensions@22#, and we welcome experiments o
these systems. The flow instability is due to perturbation
an equilibrium phase transition; while systems such
wormlike micelles probably possess some combination
perturbed~I-N! and dynamic transitions@5,14#, which could
et
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yield a stress–strain-rate–composition surface@Fig. 1~b!#
with multiple folds.

We have not considered the important problem of the s
bility of an undulating interface, which may restrict th
choice of field variables@30#. Stability analysis by Renardy
@31# on banded flow in the Johnson-Segelmann mo
@which has the qualitative behavior of curveb in Fig. 1~a!,
but no gradient terms# revealed a stationary interface atany
stress in the two-stress region, and a family of unstable h
wave-number undulations. Gradient terms break the st
degeneracy@19,20,24# and introduce a stabilizing surfac
tension and dissipation within the interface as it mov
which affects the stability analysis. Finally, complementa
to the planar shear case analyzed above, Greco and Ball@18#
have recently demonstrated the important result that, fo
Johnson-Segelmann fluid incylindrical Couette flow, a sta-
tionary interface exists at a selected stress: coexistenc
apparently influenced by the curved boundary geometry
the flow.
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Technology Program for support.
d

,

@1# C. R. Safinya, E. B. Sirota, and R. J. Plano, Phys. Rev. L
66, 1986~1991!.

@2# J.-F. Berretet al., Europhys. Lett.25, 521~1994!; J.-F. Berret,
D. C. Roux, and G. Porte, J. Phys.~France! II 4, 1261~1994!.

@3# H. Rehage and H. Hoffman, Mol. Phys.74, 933 ~1991!.
@4# D. Roux, F. Nallet, and O. Diat, Europhys. Lett.24, 53 ~1993!.
@5# V. Schmittet al., Langmuir10, 955 ~1994!.
@6# P. T. Callaghanet al., J. Phys.~France! II 6, 375 ~1996!.
@7# S. Hess, Z. Naturforsch. A31, 1507~1976!.
@8# P. D. Olmsted and P. M. Goldbart, Phys. Rev. A41, 4578

~1990!; 46, 4966~1992!.
@9# H. See, M. Doi, and R. Larson, J. Chem. Phys.92, 792~1990!.

@10# M. E. Cates and S. T. Milner, Phys. Rev. Lett.62, 1856
~1989!.

@11# M. Doi and S. F. Edwards,The Theory of Polymer Dynamic
~Clarendon, Oxford, 1989!.

@12# M. E. Cates, T. C. B. McLeish, and G. Marrucci, Europhy
Lett. 21, 451 ~1993!.

@13# N. A. Spenley, M. E. Cates, and T. C. B. McLeish, Phys. R
Lett. 71, 939 ~1993!.

@14# M. E. Cates, J. Phys. Chem.94, 371 ~1990!.
@15# T. C. B. McLeish and R. C. Ball, J. Polym. Sci. Polym. Phy

Ed. 24, 1735~1986!.
@16# G. Porte, J.-F. Berret, and J. L. Harden, J. Phys.~France! II 7,

459 ~1997!.
t.

.

.

@17# V. Schmitt, C. M. Marques, and F. Lequeux, Phys. Rev. E52,
4009 ~1995!.

@18# F. Greco and R. C. Ball, J. Non-Newtonian Fluid Mech.69,
195 ~1997!.

@19# J. R. A. Pearson, J. Rheol.38, 309 ~1994!.
@20# N. A. Spenley, X. F. Yuan, and M. E. Cates, J. Phys.~France!

II 6, 551 ~1996!.
@21# M. Doi, J. Polym. Sci. Polym. Phys. Ed.19, 229 ~1981!; N.

Kuzuu and M. Doi, J. Phys. Soc. Jpn.52, 3486~1983!.
@22# P. A. Buinin and H. N. W. Lekkerkerker, J. Phys. Chem.97,

11 510~1993!.
@23# A. W. El-Kareh and L. G. Leal, J. Non-Newtonian Flui

Mech.33, 257 ~1989!.
@24# P. D. Olmsted and C.-Y. D. Lu~unpublished!.
@25# P. G. de Gennes and J. Prost,The Physics of Liquid Crystals

2nd ed.~Clarendon, Oxford, 1993!.
@26# P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys.49, 435

~1977!.
@27# In the few cases where the final phase diagram ofsxy andm

has a transition line parallel to them axis, one must first fix
m0 , and then determines0 .

@28# See, e.g., R. H. Abraham and C. D. Shaw,Dynamics - The
Geometry of Behavior,Part 3~Aerial Press, Santa Cruz, 1985!,
p. 53.

@29# A. V. Bhaveet al., J. Rheol.37, 413 ~1993!.
@30# M. Goulian and S. T. Milner, Phys. Rev. Lett.74, 1775~1995!.
@31# Y. Y. Renardy, Theor. Comp. Fluid Mech.7, 463 ~1995!.


