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Coexistence and phase separation in sheared complex fluids
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We demonstrate how to construct dynamic phase diagrams for complex fluids that undergo transitions under
flow, in which the conserved composition variable and the broken-symmetry order paranegtatic, smec-
tic, crystalline, etd.are coupled to shear rate. Our construction relies on a selection criterion, the existence of
a steady interface connecting two stable homogeneous states. We (geribealizegl Doi model of lyotropic
nematic liquid crystals as a model system, but the method can be easily applied to other systems, provided

nonlocal effects are includefiS1063-651X97)51707-7

PACS numbg(s): 47.50+d, 05.70.Ln, 64.70.Md, 47.20.Ft

Complex fluids in shear flow display a range of behaviorsrium phase transitions, it occurs along a hyper-surface of

that is only beginning to be unearthft-6]. Shear can per-
turb equilibrium phase transitionge.g., the isotropic-to-

nematic (I-N) liquid crystalline [2,7-9 and isotropic-to-
lamellar[10] transitiong, and induce structurgg.g., bilayer

lower dimension than that of the field variable space. Our
discussion is facilitated by examining the stress—strain-rate—
composition surface, a representation we have not seen be-
fore and hope will become commonplace.

onions[4]) that exist only as metastable equilibrium phases. The curves in Fig. (8 are reminiscent of pressure-
A related phenomenon is dynamic instability in non-volume isotherms in a liquid-gas system and, accordingly,

Newtonian fluids, when the theoretid@mogeneoustress—

we seek to construct a “phase diagram” by pursuing an

strain-rate constitutive relation exhibits multivalued behav-analogy between homogeneous stable steady states and equi-

ior, as in theories of polymer mel{d1,12 and wormlike

micelles[13,14]. Such models are often used to describe, for [T T T T (T T
example, the spurt effect, whereby the flow rate of a fluid in 0.07 - lIsotropic branch  (a) //—
a pipe changes discontinuously as a function of applied pres- - (a)u=2.55 \//b/// 8
sure drop[15]. The most important unresolved question 0.05 |- 8:::':3 Z /7/ - ]
about nonmonotonic flow curves, such as those in Fig), 1 =y | (d)u=265 // ]
is what determines the stress, if any, at which the system <o = © "=2-7‘/ 006 A
phase separates into “bands”? Suggestions have included ’ i / Ted 005 - / kR
(a) variational hypothese®Ref.[16]); (b) assuming the stress L / " / ’ / L "c 1A
at the top of the stable viscous branch is seledtadp .01 - nematic branch CYETERT)
jump”) [12,13,17; (c) including geometrical effect18]; 92 os P T Y

and(d) incorporating(physically presentnonlocal contribu- Y x10*

tions to the stresgs,19,20. In this paper we pursu@) and

explore in detail the utility of constitutive inhomogeneous
effects in resolving the issue of stress selection in complex
fluids, which has occupied the rheology and physics commu-

nities in the guise of either unstable flojs9] or nonequi-
librium phase transitiong3].

After a general discussion we introduce semiphenomeno-
logical equations of motion for rodlike molecules in solution,
extending the Doi moddR21] to inhomogeneous flows. Our
study has the following goals and resul(s) We present a
generalrecipe for computing phase separation under flow, b u
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and hence the experimentally measured rheological behav- d

ior; (2) we point out that the proper field variableither

stressor strain rat¢ may not be unique, a feature absent from
equilibrium systems(3) using concepts developed for dy-

namical systems theory we conclude that stress selection of FIG. 1. (a) Homogeneous stresésxy Vs strain ratéy behavior for

models with nonlocalin spacg differential constitutive re-
lations in planar shear flow isnique i.e., as with equilib-
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various excluded volumgsi= ¢L v,/ «) as calculated from the Doi
model with quadratic closurg21,23. We use the dimensionless
parametersy=y/(6D ,v1v3) and a,y= 0, v,logL/(9m7D,,). Dot-

ted lines mark unstable branches. The planéjris at fixed stress.

At ue both isotropic and nematic phases are metastable in zero
shear. Here and below=>5.

R55 © 1997 The American Physical Society
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librium phases. As in equilibrium, nonequilibrium “phases” the orientational contribution yielding an I-N transitip2u],
may be separated, in field variable space, by hyper-surfacesd spatial correlations of composition and nematic order
representing continuou®.g., critical points or discontinu-  within the one constant approximation. The phenomenologi-
ous (“first-order”) transitions[8,1]. Coexistence implies an cal gradient terms may, in principle, be calculated from a
inhomogeneous state spanning separate branches of the hoicroscopic model.

mogeneous flow curves. In contrast to equilibrium bulk The equations of motion af®1,24,2§

phases, where field variables are uniquely identified, here we

may consider phase coexistence at a given shear stress, with p(d+Vv-V)v=V.0(¢,k,Q), 2
the interface parallel to the vorticity-velocity plarfeurves

b—e); or a given strain ratécurvesc—e), with the interface (0+Vv-V)Q=F(x,Q)+G(¢,Q), 3
parallel to the velocity-velocity gradient plane. The appropri-

ate field variable is thus determined by the nature of the (d¢+v-V)p=—-V-J, 4

constitutive relationfor curveb, common strain rate is im-
possible, or even by the flow history or the rheometerg.,  With «,5=V gv, andp the density. The stress tensor is
fixing the stress or strain rate in curves-e). In this paper
we compute coexistence at a common stress, but note that o=—pl+29K°+ 010, (6,Q) )
computation for a common strain rate is analogous. In equi- s
librium, minimizing the total free energy leads to equality of Where «z=(xap+ ks,)/2 and we takey to be the solvent
field variables between two phases and the Maxwell comViscosity 7 for simplicity. The reversible stress due to the
mon tangent conditiore.g., the equal osmotic pressure con-nematic order i$21,8,24
dition, aided by equal chemical potential, in rod suspensions
[22]_). In dynamics, t_he former fo_ll_ows fr_om the equations of Fre=—3H+H-Q-Q-H-VQ,, OF ' ®
motion plus the stationary condition, with an extra shear de- 0V Q.p
gree of freedom. However, the lack of a criterion to replace
the latter leaves an unresolved degenefaay., which stress Where H=—67/5Q. The isotropic stress from the force
is selected for a given averaged strain yafdow experi- ~density (V ¢) 87/ 6¢ [26] has been neglected. In E) the
ments on wormlike micelles find a well-defined transition (reactive ordering termF is given by
stress for the onset of banded floj#s3,5,q, which suggests ) s T .
that the degeneracy is not physical. F(r,Q) =36+ K- Q+Q-x —2(Q+31) THQ- k).

For the thermotropidi.e., restricted to the melt composi- @)
tion) I-N transition under flow, Olmsted and Goldbdf] For simplicity. we have chosen the form ropriate for an
resolved this degeneracy by rejecting those possibilities tharo SMPlcily, we have chosen Ihe lorm appropriate for &

did not admit a stationary interface solution and found, nu—mfmIte aspect rati¢21]. The dissipative portio is

merically, an apparently uniquely selected state. They in- 3

. g . . ) 6v,Dovy
cludedgradient termswhich penalizgenergetically spatial G(¢,Q)= H, (8)
microstructure variations and dictate the interface structure. kg T3/8(1—3 TrQ?)?

The importance of gradient terms was also recognized in
Refs.[23,19,2Q. The existence condition of a stationary in- whereD, is the single-rod rotational diffusion coefficient,
terface selects one among a band of possible coexisting so4 is a geometric prefactor, andis the rod lengt21]. The
lutions, and is fundamentally different from augmenting achemical potential drives the currend,
local constitutive model with a variational principl&6] or
assuming selection at the limits of stabilfg2,13,17. Be- J=—M-Vu, 9
low we justify theuniquenes®f a selected state.

Now we proceed with our calculation. The free energy ofwhereM is the mobility tensor angk= 6F/5¢.

a solution of rodlike molecules of volume fractiah in an For other systems, equations like E¢$. and(3) govern
athermal solvente.qg., as in Ref[22]) is given by the conserved and broken-symmetiyr other long-lived
variables, respectively. For some local models, internal dy-
é (1—¢) namics[Eg. (3)] can be eliminated to give the stress as a
f(¢,Q)=kBTJ dgr( —loge+ log(1— ¢) history integral over the strain rate. In polymer melig]
Uy Vg . . ) . .
and wormlike micelleg14] far from a nematic regime, this
& leads to nonmonotonic stress—strain-rate curves.
+ v—[%( —3u) TrQ®—3u TrQ3+ zu( TrQ?)? We seek stable steady-state solutions to E2)s-(4) for
' planar sheary(r) = yyx. Integrating Eqs(2) and (4) along
1 27,1 2 y yields o,(¢,y,Q)=0y and u(¢,Q)= g, Where oq is
2K (VaQp)1H+20(VE) ] ' @) the appliedystress. One integration constant of(Egis zero

from the boundary conditiod,=0, while u, is determined
Here v, and v, are rod and solvent monomer volumes, below [27]. For homogeneous solution§ may be elimi-
Q. is the nematic order parameter tend@5], and u nated fromo,, and u using Eq.(3). The stress is shown in
=¢Lv,/a is Doi's excluded volume parametg21], where Fig. 1. Becausé(¢,Q) describes an I-N transition, multiple
L is the rod aspect ratio ang, and @ are O(1) geometrical roots for Q may exist at a given streg8,9], with distinct
prefactors. This free energy includes the entropy of mixingstrain rates.
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FIG. 2. (a) Reduced strain rat’é/(u) for the stress contour in
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FIG. 3. Phase diagram in thefr,(y—u) (@ and (;/—u) (b)

Fig. 1(b). (b) «(u) along the curve ir{a). A selected pair has been ggjid lines are calculated tie lines.

indicated in(a) and (b). The inset shows anothétopologically
possibleu(u). Dashed lines mark the limits of stability of coexist-
ing pairs.

For coexistence at fixed stresg, (the interface has a
normal parallel toy), a stress contour traces a line in the
y-¢ plane[Fig 2(a)]. We plot u(¢) along this line in Fig.
2(b). Coexisting phases must have the sgmd-or concen-

planes. Broken lines trace the loci of points 4 in Fig. 2, and the

and varying the stress yields the phase diagram of Fig. 3
[24]. In the latter, fory=0 the tie line is horizontal, and for
y>0 tie lines have positive slope, because the more concen-
trated nematic phase has a lower effective viscosity. For
models whereu(¢) has the shape of the inset of FigbpR
tie lines have negative slopes.

Between these points, we must determmpgat which two
phases coexist. Following Ref8], we select theu, that

. _ : : . : Figure 4 shows the stress—averaged-strain-rate curves as
trations¢ outside points 1 and 44, is determined uniquely. would be measured in an experiment. Here the coexistence

region comprises lines with positive slopes. For models with
vertical tie lines in Fig. &), indicating a composition-

permits a stationary interface profile between the two stablgndependent transitiorfas in the Doi-Edwards model of
homogeneous states wily. This inhomogeneous solution polymer melty, the plateau would be flat. This is a graphical

satisfieso,y= oo, u= uo and Eq.(3) (0=F +G). This is not

expression of the explanation of a sloped plateau given by

an auxiliary assumption, but follows from the inhomoge-Schmittet al.[17] (however, they assumed “top-jumping”

neous equations of motioiven a selectegiy and a mean

In general one must vary both average concentration and

concentrationp, the portions of the two phases are fixed by strain rate to maintain constant shear stress, a situation famil-
the lever rule, and the mean shear rate can be calculated. i@ from equilibrium multi-component phase coexistence.
the static limit =0 the stationary interface condition fol- Th€ “Plateau” need not be a straight line; its shape is deter-

lows from minimizing F(¢,Q) with a given(ﬁTconstraint.
Functional minimization with respect t6(y) allows the in-
terface position to move, thereby adjusting the ratio of the[,

two phases and recovering the common tangent construction:

To see howug can be selected uniquely, note that E3),
oyy=09, and u=pug, are nonlinear ordinary differential
equations(ODE) involving d/dy. These ODE may be con-
verted into an equivalent set of first order ODE with depen

dent variables{¢,d¢/dy,'y,Q,dQ/dy}. In the ODE phase

mined by the change in splay of the tie lines with increasing
strain rate in Fig. @). Experiments on wormlike micelles

2] have found the plateaus to be steady states and the
spines” to be metastable branches.
In summary, the steps to compute phase separation under
flow are (1) Determine the fulinhomogeneousquations of
motion. (2) Analyze stable homogeneous flow8) Choose

the candidate field variable for phase coexistence. Multiple
“choices(e.g., stress or strain rate, according to interface ge-
ometry must be analyzed separatelyt) Identify pairs of

space, the interfacial solution corresponds to a trajectary phases with the same field variables, as in Figs) 4nd 2b)

“heteroclinic saddle connection”joining two fixed points
(the homogeneous staje#\s o changes for fixedr,, the
phase flow changes catastrophically at those isolated value
of wy where the desired trajectory exis(Shis is proven for
differential constitutive relations in planar floW24] by

< 0.07

2 005 |-

showing that the saddle connection, assuming it exists, is of < ©

the non-transverse typg28].) This explains the apparent
uniqueness of a selected,, given o, found numerically.
Our (one-dimensional solution supports theexistenceof
such a solution in the modified Doi model, and is stable
against perturbations ity. Because nonlocal effectsee
Refs.[23,19 for diffusion effecty always exist in reality,

0.03

0.01

v |

1.0

1.2 14
x1

04

and pathological degeneracies only occur in local models, we FiG. 4. Oyy VS y for various compositions. To read this from

expect that models that can resolve the interface structurgig. 3, choose a and increase the stress. In the two-phase region

have unambiguous phase diagrams.
The selection criterion determines the tie lines on Fig. 2js reached.

jump from stress tie line to stress tie line until the one phase region
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for oy and u. (5) Determine the phase diagrafim field yield a stress—strain-rate—composition surfa€ey. 1(b)]
variables by requiring a stationary interface between homo-with multiple folds.
geneous solutions. To compare with experiments, density We have not considered the important problem of the sta-
variables can be used, as in Fig. 3, to i@l the tie lines  bility of an undulating interface, which may restrict the
where the lever rule applies an@) the space-averaged choice of field variable$30]. Stability analysis by Renardy
stress—strain-rate relatior&ig. 4). Other multicomponent [31] on banded flow in the Johnson-Segelmann model
systems retain the structure of Eq@)—(4), with Eq. (3) [which has the qualitative behavior of curbein Fig. 1(a),
governing the dynamics of some structural order parameteUt N0 gradient ternjsevealed a stationary interfaceaty
We have calculated coexistence at fixed stress, whil§t€SS in the two-stress region, and a family of unstable high-
curvesc—e in Fig. 1(a) admit, in principle, coexistence at wave-number undulatlons._Grad|ent terms _b_reak the stress
fixed strain rate. A full solution of Eq$2)—(4) requires ana- 9€9eneracy19.20,24 and introduce a stabilizing surface

lyzing both interface directions, which is reminiscent of, andtenSIOn and dissipation within the interface as it moves,

may be relevant to, the problem of the orientation of diblockWhICh affects the stability analysis. Finally, complementary

lamellar phases in shef80]. Also, we have only considered to the planar shear case analyzed_ above, Greco andBal
flow-aligning solutions to the Doi model. Another solution have recently demonstr_ate_d _the mportant result that, for a
" - L . Johnson-Segelmann fluid gylindrical Couette flow, a sta-
(called “log-rolling” because the rodlike molecules point . X . ) ; .
along the vorticity axis and roll with the flowis stable at tionary mterface exists at a selected stress: coexistence is
high shear rate$29] and will be included in a complete apparently influenced by the curved boundary geometry of

treatment[24]. The extended Doi model is appropriate for the flow.

hard rod suspensiojg2], and we welcome experiments on ~ We thank J.-F. Berret, M. Cates, F. Greco, P. Goldbart, J.
these systems. The flow instability is due to perturbation oHarden, R. Larson, G. Leal, T. McLeish, G. Porte, and N.
an equilibrium phase transition; while systems such aspenley for many discussions; the Isaac Newton Institute,
wormlike micelles probably possess some combination ofvhere this work was begun; an€.-Y. D. L.) the Colloid
perturbed(I-N) and dynamic transition,14], which could  Technology Program for support.
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